.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "examples/example_7_stimulus_optimization.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_examples_example_7_stimulus_optimization.py>`
        to download the full example code.

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_examples_example_7_stimulus_optimization.py:


Stimulus optimization
=====================
This script shows how to optimize the stimulus presentation by means of selecting the optimal subset of stimuli from a
set of candidate stimuli and how to select an optimal layout to allocate them to a stimulus grid. The methods to
optimize such subset and layout were developed and evaluated in [1]_.

The data used in this script are simulated.

References
----------
.. [1] Thielen, J., Van Den Broek, P., Farquhar, J., & Desain, P. (2015). Broad-Band visually evoked potentials:
       re(con)volution in brain-computer interfacing. PloS one, 10(7), e0133797.
       DOI: https://doi.org/10.1371/journal.pone.0133797

.. GENERATED FROM PYTHON SOURCE LINES 16-25

.. code-block:: Python


    import matplotlib.pyplot as plt
    import numpy as np
    import seaborn as sns

    import pyntbci

    sns.set_context("paper", font_scale=1.5)








.. GENERATED FROM PYTHON SOURCE LINES 26-30

Simulated data
-----------------
The cell below generated synthetic data. Specifically, we will generate a set of modulated Gold codes and use a
convolution with a synthetic flash-VEP to generate simulated EEG template responses.

.. GENERATED FROM PYTHON SOURCE LINES 30-57

.. code-block:: Python


    fs = 120  # Hertz
    pr = 60  # Hertz
    amplitude = 1.0  # microvolts
    width = 0.020  # seconds
    latency = 0.100  # seconds
    encoding_length = 0.3  # seconds
    n_channels = 1
    snr = 0.5

    # Generate codes
    V = pyntbci.stimulus.make_gold_codes()
    V = pyntbci.stimulus.modulate(V)
    V = V.repeat(int(fs / pr), axis=1)
    n_codes, n_samples = V.shape

    # Generate structure matrices
    M = pyntbci.utilities.encoding_matrix(V[:, np.newaxis, :], int(encoding_length * fs))

    # Generate flash-VEP
    time = np.arange(0, encoding_length, 1/fs)
    r = amplitude * (1 - ((time - latency) / width)**2) * np.exp(-0.5 * ((time - latency) / width)**2)

    # Generate template responses
    T = r.dot(M.transpose((1, 0, 2)).reshape((-1, n_codes * n_samples))).reshape(n_codes, n_samples)
    T /= np.std(T, axis=1, keepdims=True)  # normalize amplitudes








.. GENERATED FROM PYTHON SOURCE LINES 58-64

Optimize stimulus subset
-----------------
The cell above generated 63 different codes and for each an expected template EEG response. In the following we assume
we have a 4 x 8 matrix speller setup, for a total of 32 classes. Thus, we can select an optimal subset of 32 codes
from the 63 available codes. This we will do by minimizing the maximum pair-wise correlation between templates within
the subset.

.. GENERATED FROM PYTHON SOURCE LINES 64-113

.. code-block:: Python


    n_random = 100000  # number of random "optimizations"

    # Assumed speller matrix
    matrix = np.arange(32).reshape(4, 8)
    n_classes = matrix.size

    # Compute correlation matrix
    rho = pyntbci.utilities.correlation(T, T)
    rho[np.eye(rho.shape[0]) == 1] = np.nan

    # Optimize subset
    optimized_subset = pyntbci.stimulus.optimize_subset_clustering(T, n_classes)
    optimized = np.nanmax(rho[optimized_subset, :][:, optimized_subset])
    optimized_vals = rho[optimized_subset, :][:, optimized_subset].flatten()
    optimized_vals = optimized_vals[~np.isnan(optimized_vals)]

    # Random subset
    random_subset = []
    value = 1  # maximum correlation
    random = np.zeros(n_random)
    for i in range(n_random):
        subset_ = np.random.permutation(T.shape[0])[:n_classes]
        random[i] = np.nanmax(rho[subset_, :][:, subset_])
        if random[i] < value:
            random_subset = subset_
            value = random[i]
    random_vals = rho[random_subset, :][:, random_subset].flatten()
    random_vals = random_vals[~np.isnan(random_vals)]

    # Visualize tested and optimized layouts
    colors = sns.color_palette("colorblind")
    plt.figure(figsize=(15, 3))
    plt.axvline(optimized, color=colors[0], label="optimized")
    plt.axvline(random.min(), color=colors[1], label=f"best random (N={n_random})")
    plt.hist(random, color=colors[2], label="maximum within random layout")
    plt.legend()
    plt.xlabel("maximum correlation across layouts")
    plt.ylabel("count")

    # Visualize optimized layouts
    colors = sns.color_palette("colorblind")
    plt.figure(figsize=(15, 3))
    plt.hist(optimized_vals, 10, alpha=0.6, color=colors[0], label="optimized")
    plt.hist(random_vals, 10, alpha=0.6, color=colors[1], label=f"best random (N={n_random})")
    plt.legend()
    plt.xlabel("maximum correlation within layouts")
    plt.ylabel("norm. count")




.. rst-class:: sphx-glr-horizontal


    *

      .. image-sg:: /examples/images/sphx_glr_example_7_stimulus_optimization_001.png
         :alt: example 7 stimulus optimization
         :srcset: /examples/images/sphx_glr_example_7_stimulus_optimization_001.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /examples/images/sphx_glr_example_7_stimulus_optimization_002.png
         :alt: example 7 stimulus optimization
         :srcset: /examples/images/sphx_glr_example_7_stimulus_optimization_002.png
         :class: sphx-glr-multi-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none


    Text(135.16666666666669, 0.5, 'norm. count')



.. GENERATED FROM PYTHON SOURCE LINES 114-118

Optimize stimulus layout
-----------------
Now we have the optimal subset of 32 codes. Still, we could optimize how these are allocated to the 4 x 8 speller
grid, such that codes that still correlate much are not placed at neighbouring cells in the grid.

.. GENERATED FROM PYTHON SOURCE LINES 118-168

.. code-block:: Python


    # Select optimize subset
    T = T[optimized_subset, :]

    # Compute correlation matrix
    rho = pyntbci.utilities.correlation(T, T)
    rho[np.eye(rho.shape[0]) == 1] = np.nan

    # Create neighbours matrix assuming 4 x 8 grid
    neighbours = pyntbci.utilities.find_neighbours(matrix)

    # Optimize layout
    optimized_layout = pyntbci.stimulus.optimize_layout_incremental(T, neighbours, 50, 50)
    optimized = np.nanmax(rho[optimized_layout[neighbours[:, 0]], optimized_layout[neighbours[:, 1]]])
    optimized_vals = rho[optimized_layout[neighbours[:, 0]], optimized_layout[neighbours[:, 1]]].flatten()
    optimized_vals = optimized_vals[~np.isnan(optimized_vals)]

    # Random layout
    random_layout = []
    value = 1  # maximum correlation
    random = np.zeros(n_random)
    for i in range(n_random):
        layout_ = np.random.permutation(T.shape[0])
        random[i] = np.nanmax(rho[layout_[neighbours[:, 0]], layout_[neighbours[:, 1]]])
        if random[i] < value:
            random_layout = layout_
            value = random[i]
    random_vals = rho[random_layout[neighbours[:, 0]], random_layout[neighbours[:, 1]]].flatten()
    random_vals = random_vals[~np.isnan(random_vals)]

    # Visualize tested and optimized layouts
    colors = sns.color_palette("colorblind")
    plt.figure(figsize=(15, 3))
    plt.axvline(optimized, color=colors[0], label="optimized")
    plt.axvline(random.min(), color=colors[1], label=f"best random (N={n_random})")
    plt.hist(random, color=colors[2], label="maximum within random layout")
    plt.legend()
    plt.xlabel("maximum correlation across layouts")
    plt.ylabel("count")

    # Visualize optimized layouts
    colors = sns.color_palette("colorblind")
    plt.figure(figsize=(15, 3))
    plt.hist(optimized_vals, 10, alpha=0.6, color=colors[0], label="optimized")
    plt.hist(random_vals, 10, alpha=0.6, color=colors[1], label=f"best random (N={n_random})")
    plt.legend()
    plt.xlabel("maximum correlation within layouts")
    plt.ylabel("norm. count")

    # plt.show()



.. rst-class:: sphx-glr-horizontal


    *

      .. image-sg:: /examples/images/sphx_glr_example_7_stimulus_optimization_003.png
         :alt: example 7 stimulus optimization
         :srcset: /examples/images/sphx_glr_example_7_stimulus_optimization_003.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /examples/images/sphx_glr_example_7_stimulus_optimization_004.png
         :alt: example 7 stimulus optimization
         :srcset: /examples/images/sphx_glr_example_7_stimulus_optimization_004.png
         :class: sphx-glr-multi-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none


    Text(146.91666666666669, 0.5, 'norm. count')




.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 3.704 seconds)


.. _sphx_glr_download_examples_example_7_stimulus_optimization.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: example_7_stimulus_optimization.ipynb <example_7_stimulus_optimization.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: example_7_stimulus_optimization.py <example_7_stimulus_optimization.py>`

    .. container:: sphx-glr-download sphx-glr-download-zip

      :download:`Download zipped: example_7_stimulus_optimization.zip <example_7_stimulus_optimization.zip>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_