API Reference

Classifiers

rCCA(stimulus, fs[, event, onset_event, ...])

Reconvolution CCA classifier.

eCCA(lags, fs[, cycle_size, ...])

ERP CCA classifier.

eTRCA(lags, fs[, cycle_size, ...])

ERP TRCA classifier.

Ensemble(estimator, gate)

Ensemble classifier.

Envelope

gammatone(audio, fs[, fs_inter, fs_target, ...])

Compute the envelope of audio using a gammatone filterbank.

rms(audio, fs[, fs_inter, fs_target])

Compute the envelope of the audio as the root mean square (RMS) of the signal.

Gates

AggregateGate([aggregate])

Gate described by an aggregate function.

DifferenceGate(estimator)

Gate described by classification of difference scores.

Plotting

eventplot(S, E, fs[, ax, upsample, plotfs, ...])

Plot the event time-series.

topoplot(z, locfile[, cbar, ax, iso, chan])

Plot a topoplot.

Stimulus

make_apa_sequence()

Make an almost perfect auto-correlation (APA) sequence.

make_de_bruijn_sequence([k, n, seed])

Make a de Bruijn sequence.

make_golay_sequence()

Make complementary Golay sequences.

make_gold_codes([poly1, poly2, seed1, seed2])

Make a set of Gold codes.

make_m_sequence([poly, base, seed])

Make a maximum length sequence.

is_de_bruijn_sequence(stimulus[, k, n])

Check whether a stimulus is a de Bruijn sequence.

is_gold_code(stimulus)

Check whether a stimulus is a Gold code.

is_m_sequence(stimulus)

Check whether a stimulus is an m-sequence.

modulate(stimulus)

Modulate a stimulus.

optimize_subset_clustering(X, n_subset)

Optimize the subset by first clustering similar codes and subsequently selecting the best candidates from each cluster.

optimize_layout_incremental(X, neighbours[, ...])

Optimize the allocation of codes to a layout by considering the correlation between neighboring codes.

Stopping

BayesStopping(estimator, segment_time, fs[, ...])

Bayesian dynamic stopping.

CriterionStopping(estimator, segment_time, fs)

Criterion static stopping.

DistributionStopping(estimator, segment_time, fs)

Distribution dynamic stopping.

MarginStopping(estimator, segment_time, fs)

Margin dynamic stopping.

ValueStopping(estimator, segment_time, fs[, ...])

Value dynamic stopping.

Transformers

CCA(n_components[, gamma_x, gamma_y, ...])

Canonical correlation analysis (CCA).

TRCA([n_components])

Task related component analysis (TRCA).

Utilities

correlation(A, B)

Compute the correlation coefficient.

euclidean(A, B)

Compute the Euclidean distance.

covariance(X[, n_old, avg_old, cov_old, ...])

Compute the covariance matrix.

decoding_matrix(data, length[, stride])

Make a Hankel-like decoding matrix.

encoding_matrix(stimulus, length[, stride, ...])

Make a Toeplitz-like encoding matrix.

event_matrix(stimulus, event[, onset_event])

Make an event matrix.

correct_latency(X, y, latency, fs[, axis])

Correct for a latency in data.

filterbank(X, passbands, fs[, tmin, ftype, ...])

Apply a filterbank.

find_neighbours(layout[, border_value])

Find the neighbour pairs in a rectangular layout.

find_worst_neighbour(score, neighbours, layout)

Find the neighbouring pair with maximum score.

trials_to_epochs(X, y, codes, epoch_size, ...)

Slice trials to epochs.

itr(n, p, t)

Compute the information-transfer rate (ITR).